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ABSTRACT

set of animated stimuli (Lissajous figures) is described, each element of

-

g

which is physically consistent with two different three-dimensional shapes under

oing rigid rotations about orthogonal axes. Human observers typically show a

-

l

preference for one shape or the other; this preference may be biased by manipu

ating various parameters of the stimulus. Fairly good predictions of which

-

c

shape will be seen are made using an adaptation of Hildreth’s "smoothest velo

ity field" computation. When a given stimulus is rotated 90 degrees in the pic-

a

ture plane, the resolution of the ambiguity is often different, demonstrating

nisotropy in the processing of the figures. The nature of this bias is such that

-

c

for certain figures subjects see a three-dimensional object rotating about a verti

al axis regardless of which two-dimensional orientation is used to present the

nstimulus. This bias is not predicted by the Hildreth model. One interpretatio
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t

of the results is that ambiguity in two-dimensional visual motion (i.e., the aper

ure problem) is not resolved prior to the interpretation of three-dimensional

structure.
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1. INTRODUCTION

Human perception of three-dimensional shape from a sequence of two-

.

T

dimensional images is an extraordinary feat which is often taken for granted

he visual system must compute both a depth and a third component of velocity

s

for each point in the scene, and do so in a way which produces overall con-

istency. An early observation of the recovery of three-dimensional structure

-

l

from a sequence of two-dimensional silhouettes was reported by Miles [1]; Wal

ach and O’Connel [2] later dubbed the phenomenon the kinetic depth effect

-

m

(KDE). For the case of rigid rotations of discrete points, Ullman [3] has deter

ined the conditions that must be satisfied in order for the solution to be compu-

f

tationally realizable. Ullman’s more recent models [4] allow for some departure

rom rigidity, as might arise either from actual non-rigid motion, or from noise

in the input.

The complete problem becomes more difficult if one tries to extend this type

(

of approach to images which are composed of line segments and smooth curves

not to mention gray-level images), instead of just isolated dots. This increased

g

l

difficulty is due to the "aperture problem:" a motion detector viewing a movin

ine through a small aperture will be blind to motions of the line along its own

e

v

length, and will therefore be unable to report the actual two-dimensional imag

elocity within its field of view.
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The aperture problem complicates the analysis of structure-from-motio

ecause algorithms like Ullman’s require the two-dimensional image velocity at

o

each point, while sensors with a small field of view can only report the local

rientation and orthogonal velocity. Many models of the structure from motion

s

i

problem assume that estimates of the two-dimensional velocities are available a

nput [3,4,5,6,7]. One elegant approach has been proposed by Hildreth [8,9] for

t

figures comprised of closed curves. She suggested that a useful way to attack

he problem would be to try to minimize the amount of variation in the hypothet-

v

ical image velocities. Hildreth investigated a number of possible ways to define

ariation, but in most of her work she used the squared magnitude of the vector

l

difference between velocities of adjacent points on the curve. By summing the

ocal variation over the entire figure, a single number may be obtained for a

o

fi

given hypothetical solution of the aperture problem. Calculus may be used t

nd the solution which minimizes this quantity; Hildreth has called this solution

o

d

the "smoothest velocity field." In this paper we shall use the term "roughness" t

enote the variational quantity which is minimized.

e

a

One objection to Hildreth’s approach is that although the solution of th

perture problem is subsequently used to analyze structure-from-motion, it is

t

approached without regard for possible three-dimensional constraints. Intui-

ively, it seems more "information-efficient" to consider the ultimate three-

dimensional interpretation when resolving the two-dimensional ambiguity,
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e

i

instead of being locked into a two-dimensional solution which could possibly b

nconsistent with three-dimensional rigidity.

s

w

Hildreth has shown qualitatively that the algorithm makes mistakes in case

here humans also experience illusory percepts, such as in the "barber-pole"

t

t

illusion. The experiments described in this paper were performed in an attemp

o assess the validity of Hildreth’s algorithm as a description of human percep-

p

tion. The approach was to use a stimulus which had two distinct physically

lausible three-dimensional interpretations; each interpretation corresponded to a

e

o

different solution of the aperture problem. Now, these ambiguous stimuli violat

ne of the conditions of Hildreth’s algorithm: namely, that any intersections of

d

the curve in the image should correspond to actual intersections of the three-

imensional generator. For this reason, no attempt was made to solve the

e

"

minimization problem and find the smoothest velocity field. However, th

roughness" of a given hypothetical solution is still a well-defined mathematical

s

quantity. Since we know that when humans are presented with the ambiguous

timuli they usually see one of the two rigid interpretations, we simply computed

a

the roughnesses for the two rigid interpretations; if the visual system solves the

perture problem using a calculation like roughness, then subjects should per-

ceive the "smoother" interpretation.
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2. METHODS

.1. Lissajous figures

The ambiguous stimuli were drawn from a class of curves known as Lissa-

w

jous figures. Each figure has two distinct three dimensional interpretations

hich correspond to quite different shapes. Each of the two interpretations is a

-

t

three-dimensional curve which lies on the surface of the cylinder, but the orien

ation of the cylinder is different for each of the two interpretations.

s

o

The three-dimensional appearance of animated Lissajous figures wa

bserved some time before the term "kinetic depth effect" was first coined [10].

o

Philip and Fisichelli subsequently investigated the effects of various parameters

n the spontaneous depth reversals in Lissajous figures [11,12]. It should be

r

t

noted that these depth reversals are yet another ambiguity in the figures (simila

o the depth reversals seen with the "Necker cube"), which is quite distinct from

w

the ambiguity which is the topic of this paper; if one counts depth reversals as

ell as shape differences, then there are a total of four possible interpretations.

s

w

From these early reports, it is impossible to determine whether the investigator

ere even aware that the two interpretations with different rotational axes were

d

physically consistent with a single stimulus. For example, Fisichelli [12]

escribes changing the axis of rotation by simply interchanging the cables pro-

viding the deflection signals to the CRT. The parameter values used in these
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o

studies, however, were ones which produce an extremely strong bias in favor o

ne of the two interpretations, so perhaps it was simply a matter of chance that

spontaneous changes of rotational axis were not observed.

Before giving the explicit formulae describing Lissajous figures, it may be

l

illustrative to consider the problem of depicting an unambiguous curve which

ies on the surface of a cylinder. Imagine that we have a vertically oriented

r

a

cylinder of unit radius, and that we wish to paint on the surface of this cylinde

curve whose vertical position is defined as a function of angular position,

-

i

y = f (θ). (We adopt a coordinate system in which x and y are the normal view

ng screen coordinates, with z being a depth axis.) In this case, we can describe

the curve parametrically by the following equations:

x (θ) = sin(θ), (1.a)

)y (θ) = f (θ), (1.b

z (θ) = cos(θ). (1.c)

r

The curve defined by these parametric equations will lie on the surface of a unit

adius cylinder regardless of the nature of the function f (θ). If we interchange

c

the definitions of x and y , then we obtain a curve which lies on a horizontal

ylinder. This observation is the key to understanding the ambiguity of Lissa-

x

a

jous figures: if we let f (θ)=sin(θ), then the above equations are symmetric in

nd y , and the resulting curve lies on both cylinders.

nThis is illustrated graphically in figure 1. The top row shows the situatio
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s

of a generic function f (θ) painted onto a vertical cylinder. The leftmost pane

hows the cylinder unrolled (i.e., a plot of f (θ)). The successive panels show

g

w

orthographic projections of the cylinders from a number of viewpoints, endin

ith the side view. The second row shows the same process applied for the spe-

o

cial case of f =sin(2θ). In the third row, the function f =sin (θ/2) is wrapped

nto a horizontal cylinder. Note that the xy projections (the rightmost panels of

t

the second and third rows) are identical. Relatively unambiguous views of the

wo shapes are obtained in the intermediate rotations shown in figure 1. Note

e

s

that there are no three-dimensional self-intersections in the saddle-shaped curv

hown in the second row, while for the pretzel-shaped curve depicted in the third

t

row the intersection in the final projection corresponds to a self-intersection of

he three-dimensional curve.

The three-dimensional curves which project to Lissajous figures are

C

described by the following sets of parametric equations:

ase 1 (curve lies on vertical cylinder):

x (θ) = A sin(ω θ), (2.a)

V

V x x

y y yy (θ) = A sin(ω θ+φ ), (2.b)

)z (θ) = A cos(ω θ). (2.cV x x

:Case 2 (curve lies on horizontal cylinder)

x (θ) = A sin(ω θ+φ ), (3.a)H x x x
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y (θ) = A sin(ω θ), (3.b)

H

H y y

y yz (θ) = A cos(ω θ). (3.c)

The frequency parameters ω and ω must be integers for the curve to close onx y

x y o

r

itself as θ runs from 0 to 2π. Changing the phase (φ or φ ) corresponds t

otating the cylinder about its axis.

We can see the equivalence of the projected curves in these two cases by

making the following substitutions:

θ = θ′+φ /ω , (4.a)

y

x x

x
x

yφ = −φ
ω
ωhhhh . (4.b)

By substituting these values into equations 2.a and 2.b, it is easy to see that

x (θ′) = x (θ) and y (θ′) = y (θ). (5.a,b)

T
V H V H

he z function is irrelevant since we assume orthographic projection onto the xy

plane.

In order to animate the figures we let the phase (φ in equation 3.a) be a

function of time:

x

φ (t ) = 2πω t , (6)x t

twhere the parameter ω represents the angular velocity in revolutions per unit

-

t

time. Note that, from equation 4.b, the angular velocities in the two interpreta

ions differ by the ratio of the frequencies of the generating functions. Figure 2

-

s

depicts a few frames of a sequence, together with oblique views of the two pos

ible shapes. An example showing the velocities associated with each of the two
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interpretations is shown in figure 3.

- 10 -

.2. Psychophysical procedures

The stimuli were presented on a cathode ray tube (Tektronix model 611).

-

e

Signals for the X and Y deflections were produced by digital-to-analog convert

rs, or DAC’s (ADAC models 1023AD & 1023EX), under the control of a

y

a

PDP11-23 computer. The x and y gains of the display scope were carefull

djusted to provide the same spatial displacement for a given DAC increment,

thereby correcting for any possible gain differences between the two DAC’s.

The digital-to-analog converters (DAC’s) incorporated a direct memory

f

c

access (DMA) controller (ADAC model 1620DMA), which allowed lists o

oordinate pairs to be rapidly transferred from memory. After each pair of coor-

t

dinates was transferred, the interface generated a brief pulse which was used for

he Z (brightness) input to the CRT. This was a TTL logic pulse which had a

d

t

duration approximately 1 microsecond. The front panel controls were adjuste

o produce the maximum possible luminance. The time needed to write a single

d

b

point with this apparatus was approximately 10 microseconds. Curves describe

y equations 3.a and 3.b were produced by plotting 512 points at uniformly sam-

s

pled values of the parameter θ. Unfortunately, this resulted in a nonuniform

pacing of the points along the curve; although the point spacing was always less

than the spot size (so the curves appeared continuous), this did result in small
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-hhh . The coordi
s∂
θ

n

intensity variations along the curve, inversely proportional to
∂

ate lists for the sequence of frames comprising a single stimulus were computed

r

t

(and resident in memory) before the onset of the stimulus; the DMA transfers fo

he individual frames were initiated following interrupts from a real-time clock.

s

The frame rate was 100 Hz. The computation of the coordinate lists for each

timulus was speeded by using table look-up to access pre-computed values of

f

sine and cosine; before each trial, these tables were scaled by the aspect ratio

actors to reduce the number of multiplies needed.

-

i

Each trial consisted of a 2 second presentation of a figure, defined parametr

cally by equations 3.a and 3.b. For a given experimental condition, the fre-

dquency parameters ω and ω were fixed, but the aspect ratio A /A was variex y x y

f x yrom trial to trial. The product of A and A (and therefore the swept area of

dthe stimulus) was held constant. The temporal frequency ω which determinet

e

o

the rotation frequencies was set so that the faster of the two rotations had a rat

f 1 Hz.

After each trial the subjects were instructed to report whether the figure was

s

perceived in "rolling pin" motion or "merry-go-round" motion. Although the

ubjects almost universally reported that the stimuli appeared three-dimensional,

fi

they were informed that in the event that they did not see a three-dimensional

gure, they could make the judgement on the basis of whether the two-
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e

(

dimensional motion was primarily up and down (rolling pin) or side to sid

merry-go-round). The subjects were also instructed that in the event that the

e

t

percept changed during the course of the stimulus presentation, they should bas

heir response on the appearance at the end of the presentation. Subjects entered

their responses using the detached keyboard of the computer console.

It was noted in pilot experiments that elongation of the figure in one dimen-

t

sion tended to cause the rotation axis to be perceived in the same dimension as

he elongation, i.e. large values of A /A produced a "rolling-pin" percept, while

s

x y

mall values produced a "merry-go-round" percept. An up-down staircase was

atherefore used to control the selection of successive values of A /A , such thatx y

x y e

a

"rolling pin" response decreased the value of A /A by a constant factor, whil

"merry-go-round" response would increase it by the same factor. The factor

used was 0.1 log units, or approximately 1.26.

Subjects were tested under six conditions, consisting of two orientations of

three pairs of values for ω and ω . These were: ω =2, ω =1; ω =3, ω =1;x y x y x y

a x ynd ω =3, ω =2. The remaining three conditions were obtained by simply

nexchanging ω and ω . Corresponding pairs of conditions were always rux y

together. Two pairs of conditions were combined to make a block. Each of the

.

W

three possible blocks was run twice, resulting in 4 replications of each condition

ithin a block, each condition was assigned a single staircase; the trials were
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lustered into groups of four consisting of one trial from each staircase. Within

r

each cluster of trials the order of the conditions was controlled by a pseudo-

andom number generator. Within each block, 50 judgments were made for each

condition.

The subjects consisted of the one experienced psychophysical observer (the

-

p

author), and an undergraduate student who had some practice in making pycho

hysical judgements, but was naive with respect to the purpose of the experi-

-

p

ment. Additional subjects were tested in individual conditions, but did not com

lete the full experimental protocol; the (incomplete) results from these subjects

o

were similar to that shown for the two subjects who completed the full regimen

f observations. More recently, and additional experienced subject (JAP) was

s

run using a different apparatus. This apparatus consisted of a raster graphics

ystem with a frame rate of 60 Hz. Subject JAP completed 3 blocks in which

e

d

all 6 conditions were interleaved. All other parameters were identical to thos

escribed above.

Typical data from a single run of a single condition are shown in figure 4.

The percentage of "rolling pin" responses is plotted against the log of A /A .x y

w

The raw data from each block were fit with a cumulative normal using a

eighted least-squares fitting procedure, described in detail by Mulligan and

rMacLeod [13]. The inflection point of the curve is located at aspect ratio fo
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-

g

which we would expect to receive an equal number of "rolling pin" and "merry

o-round" responses; we shall refer to this aspect ratio as the critical aspect

-

d

ratio (CAR). For each of the six conditions, four replications provided indepen

ent estimates of the CAR for each subject. The fitting procedure also estimated

g

a

the semi-interquartile difference (SIQD), which is the change in the abscissa (lo

spect ratio) required to change the response rate from 50% to 25% or 75%.

2.3. Smoothness estimates

Predictions were made using an adaptation of the computation proposed by

d

Hildreth [8,9]. Hildreth defined a variational measure on possible two-

imensional velocity fields, and solved for the velocity field which minimized

h

s

this quantity, calling this the "smoothest velocity field." Here we adopt a muc

impler approach: instead of finding the minimum, we simply compute the

m

w

"roughness" of each of the two rigid solutions, and assume that the visual syste

ill prefer the interpretation having the lower value. No claim is made that

-

t

either solution actually corresponds to a local minimum of the roughness func

ion.

Following Hildreth, the quantity used to define "roughness" was

)hhh e ds (7
v∂
s

R(v ) = e
∂

→
2

T

∫
his integral was approximated as a discrete sum:

)hhhhhhhhdθ (8
ee ∂v /∂θ
e

R(v ) =
e ∂s /∂θ

→

i =1

N 2

Σ
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)

a

where θ is the parameter used to trace out the curves in equations (2) and (3

bove, and dθ is equal to
N
2πhhh . This quantity was computed for each of the two

s

a

possible interpretations; for rotations about a horizontal axis, all of the velocitie

re in the vertical direction:

v = A ω cos(ω θ), (9)→
y y y y
→

y
y y

2
y∂θ

∂vhhhh = −A ω sin(ω θ), (10)

For vertical axis rotation, all of the velocities are horizontal:

v = A ω cos(ω θ+φ ), (11)→
x x x x x
→

x
x x

2
x x∂θ

∂vhhhh = −A ω sin(ω θ+φ ), (12)

The remaining quantities needed to evaluate the sum in equation (8) are:

∂θ
∂shhh =

I
J
L

I
J
L ∂θ

∂xhhh
M
J
O

+
I
J
L ∂θ

∂yhhh
M
J
O

M
J
O

, (13)

x

2 2 1⁄2

x x x∂θ
∂xhhh = A ω cos(ω θ+φ ), (14)

)hhh = A ω cos(ω θ). (15
y∂
θ∂ y y y

x yLet us use the terms R and R to represent the roughnesses computed for

d

o

motion about vertical and horizontal axes, respectively. These quantities depen

n the amplitude factors A and A , the frequencies ω and ω , and the rota-

t x

x y x y

ional phase φ . It turns out that the roughnesses vary as a function of rotational

n

phase; this variation is shown in figure 5, where the log of the inverse smooth-

ess is plotted as a function of phase. The phases at which the roughness meas-
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re attains a maximum correspond to rotational positions where the front and

,

a

back sections of the generating curve project onto the same curve in the image

s occurs in the left-most and right-most panels of figure 2.

c

l

The measure of roughness defined in equation (8) is affected by the total ar

ength, which is a function of rotational phase. If we double both of the ampli-

tude factors A and A , the roughnesses R and R also double (as does thex y x y

e

w

total arc length). Thus we see that if we wish to have a roughness measur

hich depends only on shape and not on absolute size, we might obtain this by

dividing by the total arc length L:

L =
∂θ
∂shhhdθ. (16)

2π

0
∫

For the parameter values used to generate the data shown in figure 5, however,

p

arc length variations as a function of phase are less than 5%, so the qualitative

icture is not affected by this change.

Although the roughnesses vary as a function of phase, it can be seen from

y

t

figure 5 that the ratio of the roughnesses is relatively constant, as indicated b

he roughly constant vertical separation on the log ordinate. Log roughness ratio

t

b

as a function of phase is plotted in figure 6 for different aspect ratios. Note tha

y taking the ratio of the roughnesses, we have divided out the effect of total arc

length.
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t

A single number characterizing the relative smoothness of the two interpre

ations was obtained by integrating the log roughness ratio across rotational

t

a

phase. This was justified on the grounds that the ratio was relatively constan

cross phases, and because, although subjects’ percepts are bistable, the transi-

o

h

tions do not seem to be phase-locked with the rotation. Once this average rati

as been computed, we can estimate the predicted value of the critical aspect

f

0

ratio by solving for the aspect ratio which yields a mean log roughness ratio o

. Because the visual system might integrate on some other transformed

-

i

representation, we should be prepared to accept an error on the order of the vert

cal variation of the curves in figure 6.

Figure 7 plots log roughness ratio as a function of log aspect ratio for ω =1,

ωy x y

x

=2, and ω =2, ω =3. The points represent the mean of 256 different phases,

o

a

sampled uniformly over the interval 0 to π/4. The sample phases were placed s

s to straddle the phases at which the singularities occur, such as φ =0. It mayx

.

L

be observed that the points fall close to a straight line with a slope of 1/2

inear regression was used to fit a line to the points; the log of the critical

.

C

aspect ratio (CAR) was taken to be the X intercept from the regression equation

ritical aspect ratios were obtained in this way for a number of pairs of frequen-

cies (ω ,ω ); log CAR is plotted against log frequency ratio ω /ω in figure 8,x y x y

eshown by the filled squares. Note that the points fall close to a line with a slop
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nof -2. A weak explanation for this can be made from the fact that A appears ix

x .

T

equation 10 with an exponent of 1, while ω appears with an exponent of 2

he graph figure 8 is symmetric: the positions of the points in the upper left

r

quadrant are simply the positions of the points in the lower right quadrant

eflected through the origin. In a practical sense, this means that the shape of

0

d

the figure at the critical aspect ratio is unaffected if the entire figure is rotated 9

egrees.

2.4. Deviations from the smoothest velocity field

f

t

In the previous section, predictions have been made on the basis of which o

he two rigid interpretations is "smoother," i.e., which rigid interpretation has the

s

lower value of the inverse smoothness measure introduced by Hildreth. In this

ection, a slightly different approach is explored: we first solve for the

e

d

smoothest velocity field (which does not correspond to rigid motion of a thre

imensional figure), and then ask to which of the two possible rigid interpreta-

tions is it more similar.

The smoothest velocity field is obtained in the manner described by Hil-

h

r

dreth. The expression for the roughness (equation 8 above) is differentiated wit

espect to the (unknown) tangential component of the velocity at each sample

n

N

point, and then equated to zero. The result is a system of N linear equations i

unknowns which is easily solved using standard linear algebra. Figure 9
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.shows the resulting velocity field for a representative figure

A measure of similarity between two velocity fields was formed by sum-

c

ming the squared vector differences between the rigid velocities and the

orresponding velocity vectors from the smoothest field. This quantity was com-

r

puted for each of the two rigid interpretations, at a number of different aspect

atios for each set of parameter values. When the log ratio of these two quanti-

fi

ties is plotted versus log aspect ratio, a pattern of results similar to that seen in

gure 7 is obtained. Linear regression was used to estimate the x intercept, i.e.

y

d

the critical aspect ratio (CAR) for which the smoothest velocity field was equall

ifferent (using the integrated squared vector difference metric) from each of the

b

two rigid solutions. The predicted CAR’s generated by this method are shown

y the open circles in figure 8, along with the predictions from the original

a

s

method. Like the original predictions, these new predictions fall on a line with

lope close to -2, although this line is slightly steeper than that describing the

3

original predictions.

. RESULTS

The experimental results are shown in figure 10. The mean log CAR over

s

the four replications is plotted as a function of log frequency ratio for the two

ubjects LR (triangles) and JBM (circles). The small filled squares show the

ecorresponding predictions from figure 8. The numerical data used to generat
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.figure 10 are given in table 1, along with the standard errors

Several features of figure 10 are notable. First, although the data do deviate

p

from the predictions, the overall slope of the data points is close to -2, like the

rediction, giving qualitative support to our modified Hildreth model. Secondly,

,

i

the deviations from the predictions are exclusively upwards from the predictions

ndicating a bias in favor of the "merry-go-round" percept. It should be noted

m

t

that the bias is evinced not simply by deviations from the predictions, but fro

he fact that pairs of points which correspond to two orientations of a given

a

p

shape are not located symmetrically with respect to the origin. Any set of dat

ossessing central symmetry would be evidence for isotropy, regardless of how

e

t

unlike the prediction it might be. The prediction does show this symmetry, sinc

here is no anisotropy built into the model.

Although the deviations from the predictions shown in figure 10 look rather

-

a

modest, it should be noted that the ordinate is a logarithmic scale, so small devi

tions correspond to profound differences in shape. In order to assess the

-

t

significance of the anisotropy, however, it is necessary to compare these devia

ions with the range of aspects ratios for which the percept is bistable. This is

,

w

indicated by the transition zone of the psychometric function shown in figure 4

hich is typical for all subjects. In most cases the size of the anisotropy effect

w

(sum of the logs of the CAR’s for corresponding conditions) is larger than the

idth of this this transition zone, indicating that there are stimuli which are
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onsistently perceived in merry-go-round motion regardless of the orientation in

4

which they are presented.

. DISCUSSION

4.1. The vertical-horizontal illusion

The vertical-horizontal illusion (VHI) refers to the fact that a vertical line

s

o

will appear longer than a horizontal line of the same physical length. The detail

f this much-studied illusion are summarized well by Robinson [14]. Observers

-

g

similarly overestimate the vertical component of motion in obliquely moving tar

ets [15]. This suggests a simple explanation of the anisotropy observed in the

e

a

data: namely, that the visual input is subjected to an affine distortion prior to th

nalysis of motion. A deformation of the image consistent with the VHI would

f

t

produce an anisotropy of the correct sign for the subjects shown in figure 10; i

he visual input were stretched in the vertical dimension by a factor α and

n

fi

compressed in the horizontal dimension by the same factor, then the lines i

gures 8 and 10 would simply be shifted horizontally by an amount 2log(α).

s

d

We can estimate the amount of deformation needed to account for the subject

ata by calculating the horizontal shift necessary to bring the regression lines for

r

the predicted and observed results in figure 10. When this is done, an aspect

atio factor of 1.20 (0.079 log units) is obtained for subject JBM, and a factor of

1.21 (0.0825 log units) for subject LR.
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e4.2. Anisotropy in 2-D apparent motion correspondenc

Gengerelli [16] has demonstrated an anisotropy of two-dimensional apparent

r

motion correspondence with the stimulus illustrated in figure 11.a, sometimes

eferred to as a "bistable quartet." The stimulus consists of two pairs of luminous

a

dots which are flashed in alternation. Each pair is located at opposite corners of

rectangle. When the pairs are alternated in time, several percepts are possible:

e

The two dots which are visible at any given time may be seen to oscillate in

ither a horizontal or vertical direction. It would also be physically consistent

,

b

for the dots to be seen in circulating motion around the perimeter of the figure

ut this is rarely observed.

In this stimulus the aspect ratio of the figure affects the perceived direction

-

c

of motion. When the horizontal separation is very small compared to the verti

al separation, it is more likely that horizontal motion will be seen. It is possible

t

to measure a psychometric function relating aspect ratio to the proportion of the

ime that horizontal motion is seen. The inflection point of this psychometric

o

f

function corresponds to a critical aspect ratio for this task, i.e. the aspect rati

or which horizontal and vertical motions are equally likely to be perceived.

c

With an aspect ratio of unity, the subjects showed a preference for vertical

orrespondence when the figure was fixated centrally. Note that this is the oppo-

p

site of what would be predicted if motion correspondence were determined sim-

ly by proximity after a deformation consistent with the vertical-horizontal



illusion.

- 23 -

Gengerelli [16] found that this bias disappeared when the display was

h

fixated eccentricly, so that the entire display fell within a single cortical

emifield, and concluded that the bias resulted from a preference to make

d

M

correspondences within a cortical hemifield. Ramachandran, Cronin-Golomb an

yers [17] performed a similar study on commissurotomy or "split brain"

l

q

patients, and found that although the bias was exaggerated, the stimulus was stil

uite ambiguous, suggesting that the perception of apparent motion across the

vertical midline was easily mediated by subcortical structures.

These results pose a puzzle with respect to the results of the present experi-

i

ment: if there is, for whatever reason, a preference for vertical correspondences

n ambiguous motion displays, then we would expect to see a preference for

.

T

"rolling pin" rotation in the ambiguous KDE figures used in the present study

his is opposite to the bias observed in the present study.

s

a

If, as is commonly supposed, computation of two-dimensional optic flow i

necessary precursor to the computation of structure from motion, then any

r

biases inherent in the two-dimensional process should be reflected in the

esponses of the three dimensional system. If there are no biases in the two-

-

s

dimensional motion process, then there cannot be any biases in the three dimen

ional process if the ambiguity must be resolved at the two-dimensional stage.
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n alternative possibility is that two-dimensional ambiguities are not

d

p

resolved prior to computation of 3-D structure. An architecture which woul

ermit this is a distributed representation in which all possible two-dimensional

t

velocities are represented; the perceived direction would usually correspond to

he most active unit, but less active units could still pass their signals to higher

d

levels. Even if a bias existed at an early stage, it would be possible for a

ifferent (stronger) bias at a later stage to dominate the resolution of the ambi-

d

b

guity. Distributed models for solving the aperture problem have been propose

y Heeger [18], Sereno [19], and Perrone [20]. Simoncelli et al. [21] have pro-

r

t

posed a form of this architecture based on probabilities which includes stages fo

hree-dimensional representation.

4.3. Ecological considerations

We have considered several possibilities for the site at which the bias is

e

p

introduced; we have not, however, said anything about why the bias might b

resent, or if it has any functional significance. The possibility has been men-

t

tioned that the bias is a direct result of an early warping of the visual field by

he vertical-horizontal illusion, and has no intrinsic significance. If, on the other

s

hand, the bias is restricted to the interpretation of three dimensional objects and

cenes, then we are faced with the intriguing possibility that the bias arises due

to some aspect of the three dimensional world. According to signal detection
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n

s

theory an observer’s criterion is influenced by the a priori probability of a give

timulus [22]; in the present case, it would be sensible to expect a bias similar to

e

that observed if "merry-go-round" motion is in fact more prevalent in the

nvironment.

Does such an ecological imbalance exist? If so, it is likely to arise from

t

t

observer self-motion, as opposed to the motion of other objects. We note tha

here is usually a rotational component to the relative motion between objects

e

o

and a moving observer, the axis of which depends on the relation between th

bject and the direction of motion. For example, when an ambulant observer

f

m

moves through the forest, the tree trunks at eye level have a small component o

erry-go-round motion in addition to a large translational component. Similarly,

m

when the observer surmounts a fallen log, the log has a component of rolling pin

otion. Perhaps the bias developed in creatures living under open skies, so that

fi

they never had any fallen logs overhead, i.e. that portion of the superior visual

eld which would have produced a component of rolling pin motion was devoid

m

of pattern. This argument seems somewhat contrived, however, and requires

any assumptions about both the nature of the environment and the behavior of

t

a

the observer with regard to locomotion and eye movements. If one assumes tha

n ambulant observer tends to look in the direction of motion, then one would

t

r

expect that the types of motion encountered would be different for the differen

egions of the visual field; in particular, this might produce a bias towards
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olling-pin motion in the inferior visual field. An investigation of the depen-

g

t

dence of the observed bias on position in the visual field would be an interestin

opic of future research.

5. Conclusions

In spite of the fact that Hildreth’s theory does not predict the anisotropy

c

seen in this study, the fact that a modified version of the theory predicts the

orrect dependence on frequency ratio (i.e., the correct slope in figure 10) is

b

strong support for the theory. The theory can easily be made to predict the

iases if an affine transformation consistent with the vertical-horizontal illusion

d

is assumed to precede the motion analysis. Reported anisotropies in two-

imensional motion correspondence, however, are inconsistent with this view.

e

c

One possibility is that the phenomena studied by Ramachandran et al. involv

ompletely different mechanisms subject to their own distinct biases. An alter-

t

native explanation is that the observed bias is introduced at a level involving

hree-dimensional representation; an implication of this hypothesis is that the

d

two-dimensional aperture problem is not resolved independently of three-

imensional interpretation.
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F

8. FIGURE LEGENDS

igure 1: Illustration of the three dimensional ambiguity of Lissajous figures.

"

i

The top row depicts a random waveform (shown on the left), which is "rolled

nto a cylinder. Several views of the cylinder are shown. In the second row, the

r

random waveform is replaced by two cycles of a sinusoid. When this curve is

olled into a cylinder and viewed from the side (far right), the parametric equa-

t

tions describing the projected curve are symmetric in x and y (with the excep-

ion of the frequency parameters), implying that the projected curve could

s

t

equally well lie on a horizontally oriented cylinder. The curve which generate

he same projection when rolled into a horizontal cylinder is shown in the bot-

n

t

tom row. Although only a single phase is shown, this ambiguity remains whe

he cylinders are rotated.

Figure 2: Illustration showing a series of possible stimulus frames together with

s

oblique views of the two possible generating shapes. The upper row shows

lightly oblique views of the corresponding vertical cylinder inscribed with the

r

i

saddle-shaped figure, while the lower row depicts views of a horizontal cylinde

nscribed with the pretzel-shaped figure. Note that the cylinder in the upper row

w

r

rotates through 90 degrees from left to right, while the cylinder in the lower ro

otates through a full 180 degrees.



- 32 -

e

i

Figure 3: Diagram showing the velocities associated with the two possibl

nterpretations of an animated Lissajous figure. On the left are shown the veloci-

m

ties corresponding to perceived rotation about a vertical axis ("merry-go-round"

otion). This corresponds to the saddle-shaped figure shown in the middle row

-

d

of figure 1. Note that the velocities of the two limbs which intersect in the mid

le of the figure have opposite directions. On the right are shown the velocities

c

corresponding to rotation about a horizontal axis ("rolling pin" motion); this

orresponds to the pretzel-shaped figure shown in the bottom row of figure 1.

s

Note that where the curve intersects itself in the center the velocities match,

ince the intersection in the figure corresponds to an actual three-dimensional

F

intersection in the projected figure.

igure 4: Typical data from a single run of the experiment. The abscissa

srepresents the log of the aspect ratio A /A , while the vertical axis representx y

-

c

the proportion of responses indicating "rolling pin" motion seen. The open cir

les are for the condition ω =2,ω =1, while the filled circles are for the dual

x

x y

ycondition ω =1,ω =2. Each curve represents 50 judgments collected with a sin-

m

gle staircase. Raw data such as these were fit with a cumulative normal to esti-

ate the critical aspect ratio at which the two percepts were equally likely. For

f

-

these data, the fitting procedure produced estimates of the critical aspect ratio o

0.30 and 0.64. The inequality of the absolute values of these numbers is evi-



F

dence of anisotropy or bias.
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igure 5: Variation of the logarithms of the roughnesses R and R as a func-x y

e

r

tion of rotational phase, which is expressed as a fraction of 2π (one complet

otation). The plot shows the log of roughness computed at 256 uniformly

spaced values of rotational phase φ . The values of the parameters werex

x y x yA =A =1, ω =1, ω =2, N =1024. The upper curve is the roughness computed

for the "rolling pin" interpretation, R , while the lower curve is the roughnessy

x e

c

computed for the "merry-go-round" interpretation, R . The separation of th

urves indicates a strong preference of the model for the "merry-go-round"

F

interpretation for this set of parameter values.

igure 6: Variation of log roughness ratio as a function of rotational phase.

The values of the parameters were ω =1, ω =2, N =1024. The three curvesx y

yx e

t

represent three different values of the aspect ratio A /A ; from the upper curv

o the lower the aspect ratios were 4.0, 1.0, and 0.25.

f

l

Figure 7: Log roughness ratio integrated over rotational phase as a function o

og aspect ratio. Log aspect ratio was sampled uniformly in 20 steps from -1 to

w

1. The values of the parameters used to generate the lower line (filled squares)

ere ω =1, ω =2, N =1024, while the upper line (triangles) represents ω =2,

ωy

x y x

=3.
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.Figure 8: Log critical aspect ratio as a function of log frequency ratio ω /ωx y

s

(

The points sampled from the abscissa correspond to the following ordered pair

ω ,ω ): (1,5), (1,4), (1,3), (2,5), (1,2), (3,5), (2,3), (3,4), (4,5), (5,4), (4,3),

(

x y

3,2), (5,3), (2,1), (5,2), (3,1), (4,1), (5,1). Filled squares indicate predictions

-

t

based on the roughness of the rigid interpretations; open circles indicate predic

ions based on difference between the rigid interpretations and the smoothest

F

velocity field.

igure 9: The smoothest velocity field, computed using Hildreth’s algorithm.

s

a

Figure 10: Log critical aspect ratio versus log frequency ratio for three subject

re plotted together with model predictions. The model predictions are indicated

e

by the small squares which lie on the straight line with slope approximately

qual to -2; filled triangles indicate data for subject LR, filled circles subject

n

t

JBM, large open squares subject JAP. Frequency/aspect ratio combinations i

he upper right quadrant are seen primarily in "rolling pin" motion, while those

n

in the lower left quadrant are seen primarily in "merry-go-round" motion. The

egatively sloped lines indicate the boundary in the parameter space between

i

a

these two regimes. The fact that pairs of data points representing rotated stimul

re not located symmetrically with respect to the origin indicates the anisotropy,

which for these data favors the "merry-go-round" interpretation.
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t

a

Figure 11: a) Stimulus configuration used by Gengerelli [16], Ramachandran e

l. [17]. The open circles represent dots present at time t , which are replaced1

2 s

s

by dots at the positions shown by the filled circles at time t . When thi

equence is presented cyclically, the percept is usually of a pair of dots in oscil-

m

latory motion, either side-to-side or up-down. b) The perceived direction of

otion can be biased by changing the aspect ratio of the figure.
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iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
subject ω ω log(CAR) SEMx y

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

i
JBM 1 2 0.667 0.048
iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

i
JBM 2 1 -0.385 0.084
iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

i
JBM 1 3 1.030 0.020
iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

i
JBM 3 1 -0.752 0.066
iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

i
JBM 2 3 0.680 0.052
iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

i
JBM 3 2 -0.294 0.032
iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

i
LR 1 2 0.657 0.040
iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

i
LR 2 1 -0.185 0.022
iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

i
LR 1 3 0.913 0.020
iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

i
LR 3 1 -0.547 0.064
iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

i
LR 2 3 0.436 0.020
iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

i
LR 3 2 -0.283 0.062
iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

i
JAP 1 2 0.594 0.011
iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

i
JAP 2 1 -0.201 0.003
iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

i
JAP 1 3 0.869 0.007
iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

i
JAP 3 1 -0.673 0.004
iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
JAP 2 3 0.502 0.005
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iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
JAP 3 2 -0.318 0.007

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

c
c
c iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc
c

cc
c

cc
c

cc
c

cc
c

cc
c

c
c
c

s

J

Table 1: Raw data used to generate the graph in figure 9. For subject

BM and LR, the mean log of the critical aspect ratio (CAR) was computed over

u

four replications of each of the six frequency pairs, while three replications were

sed for subject JAP. The fifth column shows the standard error for each mean.


